a(lambda(x), y) → lambda(a(x, p(1, a(y, t))))
a(p(x, y), z) → p(a(x, z), a(y, z))
a(a(x, y), z) → a(x, a(y, z))
lambda(x) → x
a(x, y) → x
a(x, y) → y
p(x, y) → x
p(x, y) → y
↳ QTRS
↳ DependencyPairsProof
a(lambda(x), y) → lambda(a(x, p(1, a(y, t))))
a(p(x, y), z) → p(a(x, z), a(y, z))
a(a(x, y), z) → a(x, a(y, z))
lambda(x) → x
a(x, y) → x
a(x, y) → y
p(x, y) → x
p(x, y) → y
A(a(x, y), z) → A(y, z)
A(p(x, y), z) → P(a(x, z), a(y, z))
A(p(x, y), z) → A(x, z)
A(lambda(x), y) → A(y, t)
A(lambda(x), y) → LAMBDA(a(x, p(1, a(y, t))))
A(a(x, y), z) → A(x, a(y, z))
A(p(x, y), z) → A(y, z)
A(lambda(x), y) → P(1, a(y, t))
A(lambda(x), y) → A(x, p(1, a(y, t)))
a(lambda(x), y) → lambda(a(x, p(1, a(y, t))))
a(p(x, y), z) → p(a(x, z), a(y, z))
a(a(x, y), z) → a(x, a(y, z))
lambda(x) → x
a(x, y) → x
a(x, y) → y
p(x, y) → x
p(x, y) → y
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
A(a(x, y), z) → A(y, z)
A(p(x, y), z) → P(a(x, z), a(y, z))
A(p(x, y), z) → A(x, z)
A(lambda(x), y) → A(y, t)
A(lambda(x), y) → LAMBDA(a(x, p(1, a(y, t))))
A(a(x, y), z) → A(x, a(y, z))
A(p(x, y), z) → A(y, z)
A(lambda(x), y) → P(1, a(y, t))
A(lambda(x), y) → A(x, p(1, a(y, t)))
a(lambda(x), y) → lambda(a(x, p(1, a(y, t))))
a(p(x, y), z) → p(a(x, z), a(y, z))
a(a(x, y), z) → a(x, a(y, z))
lambda(x) → x
a(x, y) → x
a(x, y) → y
p(x, y) → x
p(x, y) → y
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
A(a(x, y), z) → A(y, z)
A(p(x, y), z) → A(x, z)
A(lambda(x), y) → A(y, t)
A(a(x, y), z) → A(x, a(y, z))
A(p(x, y), z) → A(y, z)
A(lambda(x), y) → A(x, p(1, a(y, t)))
a(lambda(x), y) → lambda(a(x, p(1, a(y, t))))
a(p(x, y), z) → p(a(x, z), a(y, z))
a(a(x, y), z) → a(x, a(y, z))
lambda(x) → x
a(x, y) → x
a(x, y) → y
p(x, y) → x
p(x, y) → y
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A(lambda(x), y) → A(y, t)
A(lambda(x), y) → A(x, p(1, a(y, t)))
Used ordering: Polynomial interpretation with max and min functions [25]:
A(a(x, y), z) → A(y, z)
A(p(x, y), z) → A(x, z)
A(a(x, y), z) → A(x, a(y, z))
A(p(x, y), z) → A(y, z)
POL(1) = 0
POL(A(x1, x2)) = x1 + x2
POL(a(x1, x2)) = x1 + x2
POL(lambda(x1)) = 1 + x1
POL(p(x1, x2)) = max(x1, x2)
POL(t) = 0
a(p(x, y), z) → p(a(x, z), a(y, z))
a(lambda(x), y) → lambda(a(x, p(1, a(y, t))))
lambda(x) → x
a(a(x, y), z) → a(x, a(y, z))
a(x, y) → y
a(x, y) → x
p(x, y) → y
p(x, y) → x
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPSizeChangeProof
A(a(x, y), z) → A(y, z)
A(p(x, y), z) → A(x, z)
A(a(x, y), z) → A(x, a(y, z))
A(p(x, y), z) → A(y, z)
a(lambda(x), y) → lambda(a(x, p(1, a(y, t))))
a(p(x, y), z) → p(a(x, z), a(y, z))
a(a(x, y), z) → a(x, a(y, z))
lambda(x) → x
a(x, y) → x
a(x, y) → y
p(x, y) → x
p(x, y) → y
From the DPs we obtained the following set of size-change graphs: